高二数学知识点总结
一、高二数学答题技巧
1.掌握时间
由于,基础中考能力,所以要注重解题的快法和巧法,能在30分钟左右,完成全部的选择填空题,这是夺取高分的关键。在平时当中一定要求自己选择填空一分钟一道题。用数学思想方法高速解答选择填空题。
2.先易后难
在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。这样,你的总分就可以超过130分,向145分冲刺。
3.后三题尽量多得分
第二段是解答题的前三题,分值不到40分。这样前两个阶段的总分在110分左右。第三段是最后“三难”题,分值不到40分。“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。后3题不是只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分。
二、高二数学知识点总结(通用11篇)
在我们的学习时代,说到知识点,大家是不是都习惯性的重视?知识点就是学习的重点。掌握知识点有助于大家更好的学习。以下是小编精心整理的高二数学知识点总结(通用11篇),欢迎阅读,希望大家能够喜欢。
高二数学知识点总结1
选修Ⅰ(141个)
一、集合、简易逻辑(14课时,8个)
1.集合;
2.子集;
3.补集;
4.交集;
5.并集;
6.逻辑连结词;
7.四种命题;
8.充要条件。
二、函数(30课时,12个)
1.映射;
2.函数;
3.函数的单调性;
4.反函数;
5.互为反函数的函数图象间的关系;
6.指数概念的扩充;
7.有理指数幂的运算;
8.指数函数;
9.对数;
10.对数的运算性质;
11.对数函数.
12.函数的应用举例。
三、数列(12课时,5个)
1.数列;
2.等差数列及其通项公式;
3.等差数列前n项和公式;
4.等比数列及其通顶公式;
5.等比数列前n项和公式.
四、三角函数(46课时,17个)
1.角的概念的推广;
2.弧度制;
3.任意角的三角函数;
4.单位圆中的三角函数线;
5.同角三角函数的基本关系式;
6.正弦、余弦的诱导公式;
7.两角和与差的正弦、余弦、正切;
8.二倍角的正弦、余弦、正切;
9.正弦函数、余弦函数的图象和性质;
10.周期函数;
11.函数的奇偶性;
12.函数的图象;
13.正切函数的图象和性质;
14.已知三角函数值求角;
15.正弦定理;
16.余弦定理;
17.斜三角形解法举例。
五、平面向量(12课时,8个)
1.向量;
2.向量的加法与减法;
3.实数与向量的积;
4.平面向量的坐标表示;
5.线段的定比分点;
6.平面向量的数量积;
7.平面两点间的距离;
8.平移.
六、不等式(22课时,5个)
1.不等式;
2.不等式的基本性质;
3.不等式的证明;
4.不等式的解法;
5.含绝对值的不等式.
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率;
2.直线方程的点斜式和两点式;
3.直线方程的一般式;
4.两条直线平行与垂直的条件;
5.两条直线的交角;
6.点到直线的距离;
7.用二元一次不等式表示平面区域;
8.简单线性规划问题;
9.曲线与方程的概念;
10.由已知条件列出曲线方程;
11.圆的标准方程和一般方程;
12.圆的参数方程。
八、圆锥曲线(18课时,7个)
1.椭圆及其标准方程;
2.椭圆的简单几何性质;
3.椭圆的参数方程;
4.双曲线及其标准方程;
5.双曲线的简单几何性质;
6.抛物线及其标准方程;
7.抛物线的简单几何性质。
九、直线、平面、简单何体(36课时,28个)
1.平面及基本性质;
2.平面图形直观图的画法;
3.平面直线;
4.直线和平面平行的判定与性质;
5.直线和平面垂直的判定与性质;
6.三垂线定理及其逆定理;
7.两个平面的位置关系;
8.空间向量及其加法、减法与数乘;
9.空间向量的坐标表示;
10.空间向量的数量积;
11.直线的方向向量;
12.异面直线所成的角;
3.异面直线的公垂线;
14.异面直线的距离;
15.直线和平面垂直的性质;
16.平面的法向量;
17.点到平面的距离;
18.直线和平面所成的角;
19.向量在平面内的射影;
20.平面与平面平行的性质;
21.平行平面间的距离;
22.二面角及其平面角;
23.两个平面垂直的判定和性质;
24.多面体;
25.棱柱;
26.棱锥;
27.正多面体;
28.球。
十、排列、组合、二项式定理(18课时,8个)
1.分类计数原理与分步计数原理;
2.排列;
3.排列数公式;
4.组合;
5.组合数公式;
6.组合数的.两个性质;
7.二项式定理;
8.二项展开式的性质.
十一、概率(12课时,5个)
1.随机事件的概率;
2.等可能事件的概率;
3.互斥事件有一个发生的概率;
4.相互独立事件同时发生的概率;
5.独立重复试验。
选修Ⅱ(24个)
十二、概率与统计(14课时,6个)
1.离散型随机变量的分布列;
2.离散型随机变量的期望值和方差;
3.抽样方法;
4.总体分布的估计;
5.正态分布;
6.线性回归。
十三、极限(12课时,6个)
1.数学归纳法;
2.数学归纳法应用举例;
3.数列的极限;
4.函数的极限;
5.极限的四则运算;
6.函数的连续性。
十四、导数(18课时,8个)
1.导数的概念;
2.导数的几何意义;
3.几种常见函数的导数;
4.两个函数的和、差、积、商的导数;
5.复合函数的导数;
6.基本导数公式;
7.利用导数研究函数的单调性和极值;
8.函数的最大值和最小值。
十五、复数(4课时,4个)
1.复数的概念;
2.复数的加法和减法;
3.复数的乘法和除法;
4.复数的一元二次方程和二项方程的解法。
高二数学知识点总结2
1、柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
(3)棱台:
几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径.
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、
俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.
3、空间几何体的直观图——斜二测画法
斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;
原来与y轴平行的线段仍然与y平行,长度为原来的一半.
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和.
(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
高二数学知识点总结3
知识点:直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
斜截式:,直线斜率为k,直线在y轴上的截距为b
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(1)斜率为k的直线系:,直线过定点;
(2)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.
(3)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
(7)两条直线的交点
相交
交点坐标即方程组的一组解.
方程组无解;方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点.
(9)点到直线距离公式:一点到直线的距离.
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解.
高二数学知识点总结4
知识点:圆的方程
1、圆的定义:
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
2、圆的方程:
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形.
(3)求圆方程的方法:
一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圆与圆的位置关系:
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆.
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
5、空间点、直线、平面的位置关系
公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内
应用:判断直线是否在平面内
用符号语言表示公理1:
公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a.
符号语言:
公理2的作用:
它是判定两个平面相交的方法.
它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.
它可以判断点在直线上,即证若干个点共线的重要依据.
公理3:经过不在同一条直线上的三点,有且只有一个平面.
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.
公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据
公理4:平行于同一条直线的两条直线互相平行.
高二数学知识点总结5
1.空间直线与直线之间的位置关系
(1)异面直线定义:不同在任何一个平面内的两条直线
(2)异面直线性质:既不平行,又不相交.
(3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.
(4)求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.
B、证明作出的角即为所求角C、利用三角形来求角
(5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.
(6)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点.
三种位置关系的符号表示:aαa∩α=Aaα
(7)平面与平面之间的位置关系:
平行——没有公共点;αβ
相交——有一条公共直线.α∩β=b
2、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.
线线平行线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那么这条直线和交线平行.线面平行线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.
(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)
3、空间中的垂直问题
(1)线线、面面、线面垂直的定义
两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.
线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.
平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.
(2)垂直关系的判定和性质定理
线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.
面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.
4、空间角问题
(1)直线与直线所成的角
两平行直线所成的角:规定为.
两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.
两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.
(2)直线和平面所成的角
平面的平行线与平面所成的角:规定为.平面的垂线与平面所成的角:规定为.
平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,注意挖掘题设中两个主要信息:
(1)斜线上一点到面的垂线;
(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.
(3)二面角和二面角的平面角
二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.
二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.
直二面角:平面角是直角的二面角叫直二面角.
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
高二数学知识点总结6
1.解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
(2)应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
2.数列
(1)数列的概念和简单表示法
了解数列的概念和几种简单的表示方法(列表、图象、通项公式).
了解数列是自变量为正整数的一类函数.
(2)等差数列、等比数列
理解等差数列、等比数列的概念.
掌握等差数列、等比数列的通项公式与前项和公式.
能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.
了解等差数列与一次函数、等比数列与指数函数的关系.
3.不等式与不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
(2)一元二次不等式
会从实际情境中抽象出一元二次不等式模型.
通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.
会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
(3)二元一次不等式组与简单线性规划问题
会从实际情境中抽象出二元一次不等式组.
了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
(4)基本不等式:
了解基本不等式的证明过程.
会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点
高二数学知识点总结7
1.数列定义:
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的通项公式为:an=a1+(n-1)d(1)
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
以上n均属于正整数。
2.解释说明:
从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
且任意两项am,an的关系为:an=am+(n-m)d
它可以看作等差数列广义的通项公式。
3.推论XX式:
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
4.基本公式:
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
高二数学知识点总结8
1、科学记数法:把一个数字写成的形式的`记数方法。
2、统计图:形象地表示收集到的数据的图。
3、扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。
4、条形统计图:清楚地表示出每个项目的具体数目。
5、折线统计图:清楚地反映事物的变化情况。
6、确定事件包括:肯定会发生的必然事件和一定不会发生的不可能事件。
7、不确定事件:可能发生也可能不发生的事件;不确定事件发生的可能性大小不同;不确定。
8、事件的概率:可用事件结果除以所以可能结果求得理论概率。
9、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位为止的数字。
10、游戏双方公平:双方获胜的可能性相同。
11、算数平均数:简称“平均数”,最常用,受极端值得影响较大;加权平均数12、中位数:数据按大小排列,处于中间位置的数,计算简单,受极端值得影响较小。
13、众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。
14、平均数、众数、中位数都是数据的代表,刻画了一组数据的“平均水平”。
15、普查:为了一定目的对考察对象进行全面调查;考察对象全体叫总体,每个考察对象叫个体。
16、抽样调查:从总体中抽取部分个体进行调查;从总体中抽出的一部分个体叫样本(有代表性)。