联文网 教育资料 初一数学上册知识点总结

初一数学上册知识点总结

初一数学上册知识点总结

一、初一数学怎么学

1、 以课本为中心,注重基础

2、 课前预习很重要,别忽视

3、 课堂认真听讲,45分钟最关键

4、 课后及时复习,温故而知新

5、 做题训练,必不可少

二、初一数学上册知识点总结(通用20篇)

在我们平凡无奇的学生时代,是不是经常追着老师要知识点?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。哪些知识点能够真正帮助到我们呢?以下是小编为大家整理的初一数学上册知识点总结(通用20篇),希望能够帮助到大家。

初一数学上册知识点总结1

第一章:丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体

①几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

②点动成线,线动成面,面动成体。

3、生活中的立体图形

生活中的立体图形(按名称分)

柱:

①圆柱

②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

锥:

①圆锥

②棱锥

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:

11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)

6、截一个正方体:

用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图:

物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

第二章:有理数及其运算

1、有理数的分类

①正有理数

有理数{ ②零

③负有理数

有理数{ ①整数

②分数

2、相反数:

只有符号不同的两个数叫做互为相反数,零的相反数是零

3、数轴:

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

5、绝对值:

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。

若|a|=a,则a≥0;

若|a|=-a,则a≤0。

正数的绝对值是它本身;

负数的绝对值是它的相反数;

0的绝对值是0。

互为相反数的两个数的绝对值相等。

6、有理数比较大小:

正数大于0,负数小于0,正数大于负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

7、有理数的运算:

①五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;

绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:

减去一个数,等于加上这个数的相反数!

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

②有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

③运算律(5种)

加法交换律

加法结合律

乘法交换律

乘法结合律

乘法对加法的分配律

8、科学记数法

一般地,一个大于10的数可以表示成a×

10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)   第三章:整式及其加减   1、代数式   用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。   注意:   ①代数式中除了含有数、字母和运算符号外,还可以有括号;   ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;   ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。   代数式的书写格式:   ①代数式中出现乘号,通常省略不写,如vt;   ②数字与字母相乘时,数字应写在字母前面,如4a;   ③带分数与字母相乘时,应先把带分数化成假分数。   ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;   ⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。   ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。   2、整式:单项式和多项式统称为整式。   ①单项式:   都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。   注意:   单独的一个数或一个字母也是单项式;   单独一个非零数的次数是0;   当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。   ②多项式:   几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。   ③同类项:   所含字母相同,并且相同字母的指数也相同的项叫做同类项。   注意:   ①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。   ②同类项与系数无关,与字母的排列顺序无关;   ③几个常数项也是同类项。   4、合并同类项法则:   把同类项的系数相加,字母和字母的指数不变。   5、去括号法则   ①根据去括号法则去括号:   括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。   ②根据分配律去括号:   括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。   6、添括号法则   添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。   7、整式的运算:   整式的加减法:(1)去括号;(2)合并同类项。   第四章基本平面图形   1、线段、射线、直线   名称   表示方法   端点   长度   直线   直线AB(或BA)   直线l   无端点   无法度量   射线   射线OM   1个   无法度量   线段   线段AB(或BA)   线段l   2个   可度量长度   2、直线的性质   ①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)   ②过一点的直线有无数条。   ③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。   3、线段的性质   ①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)   ②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。   ③线段的大小关系和它们的长度的大小关系是一致的。   4、线段的中点:   点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。   5、角:   有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。   6、角的表示   角的表示方法有以下四种:   ①用数字表示单独的角,如∠1,∠2,∠3等。   ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。   ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。   ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。   注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。   7、角的度量   角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。   把1°的角60等分,每一份叫做1分的角,1分记作“1’”。   把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。   1°=60’,1’=60”   8、角的平分线   从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。   9、角的性质   ①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。   ②角的大小可以度量,可以比较,角可以参与运算。   10、平角和周角:   一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。   终边继续旋转,当它又和始边重合时,所形成的角叫做周角。   11、多边形:   由若干条不在同一条直线上的线段首尾顺次相连组成的'封闭平面图形叫做多边形。   连接不相邻两个顶点的线段叫做多边形的对角线。   从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。   12、圆:   平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。   固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。   圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;   由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。   顶点在圆心的角叫做圆心角。   第五章一元一次方程   1、方程   含有未知数的等式叫做方程。   2、方程的解   能使方程左右两边相等的未知数的值叫做方程的解。   3、等式的性质   ①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。   ②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。   4、一元一次方程   只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。   5、移项:   把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。   6、解一元一次方程的一般步骤:   ①去分母   ②去括号   ③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)   ④合并同类项   ⑤将未知数的系数化为1   第六章数据的收集与整理   1、普查与抽样调查   为了特定目的对全部考察对象进行的全面调查,叫做普查。   其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。   从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。   2、扇形统计图   扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)   圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)   3、频数直方图   频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。   4、各种统计图的特点   条形统计图:能清楚地表示出每个项目的具体数目。   折线统计图:能清楚地反映事物的变化情况。   扇形统计图:能清楚地表示出各部分在总体中所占的百分比。   初一数学上册知识点总结2   1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure).   2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).   3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).   4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).   5、几何体简称为体(solid).   6、包围着体的是面(surface),面有平的面和曲的面两种.   7、面与面相交的地方形成线(line),线和线相交的地方是点(point).   8、点动成面,面动成线,线动成体.   9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理).   10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).   11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).   12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)   13、连接两点间的线段的长度,叫做这两点的距离(distance).   14、角∠(angle)也是一种基本的几何图形.   15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.   16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector).   17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角.   18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角   19、等角的补角相等,等角的余角相等.   初一数学上册知识点总结3   (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;   (2)有理数的分类: ① 整数 ②分数   (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;   (4)自然数 0和正整数;a0 a是正数;a0 a是负数;   a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.   有理数比大小:   (1)正数的绝对值越大,这个数越大;   (2)正数永远比0大,负数永远比0小;   (3)正数大于一切负数;   (4)两个负数比大小,绝对值大的反而小;   (5)数轴上的两个数,右边的数总比左边的数大;   (6)大数-小数 0,小数-大数 0.   初一数学上册知识点总结4   (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;   (2)有理数的分类:①整数②分数   (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;   (4)自然数0和正整数;a>0a是正数;a<0a是负数;   a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.   有理数比大小:   (1)正数的绝对值越大,这个数越大;   (2)正数永远比0大,负数永远比0小;   (3)正数大于一切负数;   (4)两个负数比大小,绝对值大的反而小;   (5)数轴上的两个数,右边的数总比左边的数大;   (6)大数-小数>0,小数-大数<0.

初一数学上册知识点总结5

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成ax = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

初一数学上册知识点总结6

正数和负数

⒈、正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2、具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:—8℃

3、0表示的意义

(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

(2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

有理数

1、有理数的概念

(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

(2)正分数和负分数统称为分数

(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。③整数也能化成分数,也是有理数

注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

初一数学上册知识点总结7

1、单项式的定义:

由数或字母的积组成的式子叫做单项式。

说明:单独的一个数或者单独的一个字母也是单项式.

2、单项式的系数:

单项式中的数字因数叫这个单项式的系数.

说明:⑴单项式的系数可以是整数,也可能是分数或小数。如3x的系数是3的32

系数是1;4.8a的系数是4.8; 3

⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,

?4xy2的系数是4;2x2y的系数是4;

⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如?ab的

系数是-1;ab的系数是1;

⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如2πxy的系数就是2.

3、单项式的次数:

一个单项式中,所有字母的指数的和叫做这个单项式的次数.

说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1

的情况。如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8,

而不是7次,应注意字母z的指数是1而不是0;

⑵单项式的指数只和字母的指数有关,与系数的指数无关。

⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;

4、在含有字母的式子中如果出现乘号,通常将乘号写作“* ”或者省略不写。

5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。

返回顶部